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S1. WINTER ADVERSE DRIVING DATASET

Regarding Winter Adverse Driving Dataset, please
refer to the Supplementary information of 3D-OutDet [1]
at https://github.com/sporsho/sporsho.
github.io/blob/main/Suppli_3D_OutDet.pdf

S2. RUNTIME OF LISNOWNET

Regarding the runtime of LiSnowNet [2], please refer
to the Supplementary information of 3D-OutDet [1]
at https://github.com/sporsho/sporsho.
github.io/blob/main/Suppli_3D_OutDet.pdf

S3. INPUT TYPES FOR DEEP MODELS

TABLE S1: Input Types for models

Model Data Input
SOR [3] Raw Point Cloud

ROR [3] Raw Point Cloud

DSOR [4] Raw Point Cloud

DROR [5] Raw Point Cloud

SSR (Ours) Raw Point Cloud

LIOR [6] Raw Point Cloud

LiSnowNet [2] Range View

SalsaNext [7] Range View

SLiDE [8] Range View

SSEDEn / SMEDEn [9] Range View

PolarNet [10] Polar Birds Eye View

Cylinder3D [11] Cylindrical 3D voxel

S4. THRESHOLDING VALUE FOR SSR

Though WADS do provide point-wise annotation, we
cannot use them to find the optimal thresholding value as
our algorithm is unsupervised. Hence we empirically decided
the threshold value. For that we visualized the SSR results
for five different thresholds (0, 2.5, 5.0, 7.5 and 10.0). In
Figure S1a we see that no snow is detected at threshold 0.
In Figure S1b, we see that a good amount of snow is detected
along with some false predictions. We highlighted the false
positives as the green points inside red ellipses and false
negatives as the black points inside blue rectangles. Black
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points are predicted snow and green points are predicted non-
snow points. Figure S1c, S1d, S1e shows the visualization
for thresholds 5.0, 7.5, and 10.0 respectively. From the
figures we noticed that as we increase the threshold value
above 2.5, the number of False negatives and False positives
also increases. Hence, we have chosen 2.5 as the threshold
value for WADS dataset.

S5. ABOUT INVERSE SQUARE LAW OF LIGHT INTENSITY

Equation 1 shows the equation of Inverse Square Law
of Light Intensity. So, multiplying intensity with distance
squared will result in a constant. Though, LiDAR captures
the returned intensity, not the intensity at the object, mul-
tiplying the intensity with distance will stabilize the value
from fluctuation giving an easier thresholding opportunity.

Intensity ∝ 1

distance2
(1)

S6. LABELING CADC

2 sequences of CADC dataset were labeled by human and
with this two sequences we trained 2-fold cross validation
models. E.g., for model1, we used first sequence for training
and the second one for validation and for model2, we used
the second sequence for training and the first sequence
for validation. Then we used the average of prediction
probability from this two models to generate the labels of the
test set. We note that there are 32 sequences in the test set
and 2 of them are annotated, hence remaining 30 sequences
are machine annotated. To see how aggreable the machine
annotations are in comparison with human annotation, we
conducted Cohen’s Kappa [12] analysis and for the two
sequences that are annotated by both human and machine
have a quadratic kappa score of 0.9796. Kappa score ranges
from -1 to 1 where 1 means complete agreement and values
near zero means that the agreement is by chance, -1 indicates
complete disagreement. We see that our machine generated
labels are quite aggreable with human annotations.
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(a) SSR Thresholding at 0.0

(b) SSR Thresholding at 2.5

Fig. S1: SSR on WADS. Green points inside red ellipses are false positives, black dots inside blue rectangle are false
negatives



(c) SSR Thresholding at 5.0

(d) SSR Thresholding at 7.5

Fig. S1: SSR on WADS. Green points inside red ellipses are false positives, black dots inside blue rectangle are false
negatives



(e) SSR Thresholding at 10.0

Fig. S1: SSR on WADS. Green points inside red ellipses are false positives, black dots inside blue rectangle are false
negatives
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